Средство формирования устных вычислительных навыков у учащихся 5-6 классов

Автор: Алесина Мария Александровна

Организация: МБОУ СШ № 33 им. П.Н.Шубина

Населенный пункт: Липецкая область, город Липецк

Вычислительная культура формируется у учащихся на всех этапах изучения курса математики, но основа ее закладывается 1–6 классах. В этот период школьники обучаются именно умению осознанно использовать законы математических действий (сложение, вычитание, умножение, деление, возведение в степень). В последующие годы, полученные умения и навыки совершенствуются и закрепляются в процессе изучения алгебры, физики, химии, черчения и других предметов.

Анализируя программу по математике в 5 и 6 классах, видим, что важнейшими вычислительными умениями и навыками являются:

- умение выполнять все арифметические действия с натуральными (многозначными) числами;

- выполнять основные действия с десятичными числами;

- применять законы сложения и умножения к упрощению выражений;

- использовать признаки делимости на 10, 2, 5, 3 и 9;

округлять числа до любого разряда;

- определять порядок действий при вычислении значения выражения. [6, С.3]

Большое количество учащихся не владеют данными вычислительными навыками, допускают различные ошибки в вычислениях. Среди причин невысокой вычислительной культуры учащихся можно назвать:

- низкий уровень мыслительной деятельности;

- отсутствие соответствующей подготовки и воспитания со стороны семьи и детских дошкольных учреждений;

- отсутствие надлежащего контроля за детьми при подготовке домашних заданий со стороны родителей;

- неразвитое внимание и память учащихся;

-недостаточная подготовка учащихся по математике за курс начальной школы;

 

 

- отсутствие системы в работе над вычислительными навыками и в контроле за овладением данными навыками в период обучения. [7, С.9]

На уроках математики используются следующие приемы, направленные на преодоление причин возникновения ошибок:

1) игры, игровые моменты и занимательные задачи;

2) тесты;

3) математические диктанты;

4) творческие задания, конкурсы и олимпиадные задания.

Часть приемов может применяться при работе со всем классом, часть, направленная на развитие внимания, памяти и мышления, может подбираться для группы учеников по результатам тестирования.

В своей работе учителя придерживаются определенных принципов. Один из них формулируется следующим образом: работа в классе на каждом уроке должна выполняться всем классом, а не учителем и группой успевающих учеников. То есть необходимо создать такую ситуацию – ситуацию «успеха», при которой каждый ученик смог бы почувствовать себя полноценным участником учебного процесса.

В целях выполнения этой задачи на уроках математики часто используются игры. В игре привлекает поставленная задача и трудности, которые надо преодолеть, а затем радость открытия и ощущение преодоленного препятствия.

Применение игр в первую очередь предназначено для того, чтобы заинтересовать наиболее пассивную часть класса, редко принимающую участие в работе на уроке при традиционном его проведении. Поэтому на начальном этапе, при введении в практику урока дидактических игр, представляется целесообразным применять игры, не требующие глубокого знания и даже понимания текущего материала. В этом случае назначение дидактических игр – в развитии познавательного интереса, способствующего

 

 

накоплению знаний, умений, навыков, в привлечении внимания учащихся к проводящейся работе.

Постепенно назначение дидактических игр изменяется. Они начинают применяться для проверки полученных знаний посредством решения нестандартных задач в интересной для детей форме. При этом во время игры в группе главным действующим лицом на уроке становятся сами дети, а не учитель.

Еще одна форма работы, которая очень нравится ученикам - это тесты. Цель использования тестов: развитие критичности мышления, самоконтроля, внимания. При составлении тестов используется картотека типичных ошибок.

Следующим приемом является математический диктант – одна из форм контроля знаний. Первая цель при использовании данного вида работы – проверка уровня готовности учащихся к дальнейшей работе. Каждый учитель знает, как трудно дети воспринимают язык математики на слух. У учащихся 5 – 6 классов основным является наглядно-образное мышление. Слышать и слушать учащихся нужно учить. Следовательно, вторая цель: научить детей слышать и понимать язык математики. Надо отметить, что такую работу нужно проводить систематически.

Составление математического диктанта:

составляется текст диктанта (с ответами на все задания), дается обоснование содержания;

указывается, на какое время рассчитан диктант;

описывается методика проведения (слуховой, зрительно-слуховой, зрительный, использование карточек, запись на магнитофон, использование переносных досок, индивидуальных досок);

При такой форме работы можно использовать метод «закрытой доски»: доска закрыта; сидящие за партами должны выполнить задание самостоятельно; по окончании работы доска открывается, ученики проверяют свою работу и сами оценивают ее.

 

Творческие задания, конкурсы и олимпиадные задания – это написание сказок, задач, сценариев математических праздников, составление олимпиадных заданий и т. д. Цель этих заданий заключается в формировании интереса к математике, развитии творческого мышления.

Далеко не всё в учебном материале интересно для учащихся. Важным стимулом познавательного интереса является процесс творчества. При этом в процессе обучения школьник находит интересные стороны, сам процесс обучения несет в себе положительный заряд.

Выполняя творческие задания, дети проявляют большую изобретательность, пишут многостраничные рефераты, математические фокусы, сценарии сказок, математические кроссворды, составляют вопросы к олимпиадам по математике.

Чем чаще проверяется и оценивается работа школьника, тем интереснее ему работать.

Любая работа должна быть оценена.

Для этого устраиваются специальные уроки, на которых решаются задачи и разгадываются кроссворды, созданные учениками, организуются конкурсы работ. Дети высказывают свои впечатления, пишут рецензии. Лучшие работы (по мнению детей и учителей) вывешиваются на стенд. [10, С.6]

Еще одним средством формирования устных вычислительных навыков являются упражнения. Устные упражнения являются одной из важнейших составляющих развивающего обучения. Именно во время устной работы пятиклассник и шестиклассник эффективно учится устанавливать связи между объектами, явлениями, сравнивать, обобщать их, развивает память, наряду с этим развивает и гибкость мышления, учится контролировать свои рассуждения. [20, С.128]

Нахождение значений математических выражений. Предлагается в той или иной форме математическое выражение, требуется найти его значение. Эти упражнения имеют много вариантов.

 

Можно предлагать числовые математические выражения и буквенные (выражение с переменной), при этом буквам придают числовые значения и находят числовое значение полученного выражения.

Основное назначение упражнений на нахождение значений выражений – выработать у учащихся твердые вычислительные навыки. Вместе с тем упражнения на нахождение значений выражений способствуют и усвоению вопросов теории арифметических действий.

Главная роль таких упражнений – способствовать усвоению теоретических знаний об арифметических действиях, их свойствах, о равенствах, неравенствах и др. Кроме того, упражнения на сравнение выражений помогают и выработке вычислительных навыков.

Решение уравнений.

Назначение таких упражнений – выработать умение решать уравнения, помочь усвоить связи между компонентами и результатами арифметических действий, способствовать выработке вычислительных навыков.

Решение задач.

Цель данных упражнений выработка умений решать задачи, усвоение теоретических знаний, выработка вычислительных навыков.

В практике школы данные виды устных упражнений изменяются и дополняются самими учителями. Разнообразие упражнений возбуждает интерес у детей, активизирует их мыслительную деятельность. [2, С.166]

Предложенные устные задания помогут, особенно молодым учителям, привлечь внимание школьников на уроке и повысить их работоспособность.

 

 

 

 

 

 

 

Список использованной литературы.

  1. Абросимова Т. Обобщающие уроки по теме «Действия с десятичными дробями» //Математика в школе.- 2001. - №19. - С. 17-18.
  2. Бантова М. А., Бельтюкова Г. В. Методика преподавания математики в нач. классах: Учеб. пособие для уч-ся школ. отд-ний пед. уч-щ / Под ред. М. А. Бантовой. - 3-е изд. - М.: Просвещение,1984. - 335 с.
  3. Бантова М. А. Система формирования вычислительных навыков // Начальная школа. - 1993. - №11. - С. 38-43.
  4. Белошистая А. В. Прием формирования устных вычислительных умении //Начальная школа.- 2001.- №7.- С. 44-49.
  5. Корзанова К. Урок по теме «Сложение и вычитание десятичных дробей». - 2004.- №17.- С. 6-8.
  6. Мартынов И. И. Устный счет для школьника что гаммы для музыканта // Начальная школа. 2003.- №12.- С. 59-61.
  7. Мельникова Н. Развитие вычислительной культуры учащихся // Математика в школе.- 2001.- №18.- С. 9-14.
  8. Менчинская Н. А., Моро М. И. Вопросы методики и психологии обучения арифметики в начальных классах.- М.: Просвещение, 1965.- 224 с.
  9. Методика начального обучения математике: Учеб. пособие для студентов пед. ин-тов по спец-ти «Педагогика и методика начального обучения» / Под ред. Л. Н. Скаткина.- М.: просвещение, 1972.- 320с.
  10. Минаева С. Формирование вычислительных умении в основной школе // Математика в школе.- 2006.- №2.- С. 3-6.
  11. Нагорнова А. Устный счет при изучении десятичных дробей // Математика в школе. - 2000.- №24.- С.26.
  12. Ралко Т. Урок по теме «Деление десятичных дробей» // Математика в школе.- 2003.- №4.
  13. Санько С. Урок теме «Сложение и вычитание десятичных дробей» // Математика в школе. - 2003.- №6.
  14. Словарь психолога-практика / Сост. С. Ю. Головин.- 2-е изд., перераб. и доп. - М.: Харьест, 2003.-565 с.
  15. Судаева С., Урок по теме «Умножение десятичных дробей» // Математика в школе. - 2003. - № 3.
  16. Федотова Л., Повышение вычислительной культуры учащихся // Математика в школе. - 2004. - №35. - С. 3-7.
  17. Федотова Л. Повышение вычислительной культуры учащихся // Математика в школе. - 2004. - №43. - С. 2-5.
  18. Филиппов Г. Устный счет – гимнастика ума // Математика. - 2001. - №3. - С. 25-27.
  19. Чекмарев Я. Ф. Снигирев В. Т. Методика преподавания арифметики: Пособие для педучилищ – доп., изд 14-е. - М.:Просвещение, 1968. - 357 с.
  20. Щекунова Т. Урок по теме «Умножение десятичных дробей» // Математика в школе. - 2000. - №12. - С. 5-6.
  21. Я иду на урок математики. 5 класс: Книга для учителя. М: Издательство «Олимп»; Издательство «Первое сентября». 1999. - 352 с.

 

 

Игры на уроках математики для устного счета.

Игра «Запомни числа».

Цель игры: развитие внимания, памяти учащихся и коммуникативных способностей.

Условия игры. Учитель называет какое-либо число. Первый ученик повторяет это число и называет свое. Каждый следующий повторяет ранее названные числа и называет свое. Интерес игры в ее соревновательном характере: кто сможет запомнить больше чисел. Игра продолжается до первой ошибки.

Эту игру можно использовать в самом начале урока, так как она помогает ученикам настроится на рабочий лад, создать хорошее настроение.

Игра «Пропусти число».

Цель игры: развитие внимания учащихся и оценка знаний, полученных на предыдущих уроках.

Условия игры. Учитель предлагает учащимся по очереди называть вслух в порядке возрастания числа, начиная с 0,1, причем числа, содержащие 3 или кратные 3, следует пропускать. Ученик, назвавший запрещенное число, выбывает. Побеждает тот, кто остается последним.

В данной игре условия можно менять, в зависимости от изучаемой темы, например, при счете пропускать простые числа или числа, кратные 5,10 и т. д. Эту игру хорошо использовать в начале урока вместо опроса.

Игра «Исправляем ошибки».

Цель игры: развитие критичности мышления, самоконтроля, внимания, умения обосновывать свою точку зрения.

Условия игры. Все учащиеся класса делятся на несколько команд и жюри, в которое входит учитель и несколько учеников. Каждой команде выдают одни и те же задания с математическими выражениями и определениями, в которых допущены ошибки, с таким расчетом, чтобы число заданий было равно числу участников каждой из команд. Важно, чтобы при подготовке данной игры использовать картотеку типичных ошибок. Командам дается некоторое время для нахождения ошибки и подготовки к ответу. Та команда, которая первой успела подготовиться, дает свою версию ошибки. Если ее ответ был неверным, с точки зрения других команд или жюри, то другим командам дается возможность доказать свою точку зрения. За верный ответ команде присваивается балл (или несколько баллов в зависимости от сложности задания). Побеждает та команда, которая наберет больше баллов. Данную игру можно использовать при проведении повторительно-обобщающих уроков.

Но не всегда использование игры полностью целесообразно. Это может быть связано, например, с большим количеством времени, которое требуется на проведение всей игры. В этом случае оправдано использование игровых моментов или занимательных задач, которые имеют непривычную форму или необычны в организации выполнения задания. Игровые моменты несут те же функции, что и игры, но требуют меньше времени на подготовку и проведение. Они являются элементами игры, не требующими обучению правилам. К тому же использование игровых моментов и занимательных задач полностью согласуется со вторым принципом – разнообразия видов деятельности; смена вида деятельности – лучший отдых.

Ученики быстро утомляются при выполнении одного и того же вида деятельности. И здесь на помощь приходят игровые моменты и занимательные задачи, которые позволяют прервать монотонное течение урока, сменить род деятельности, отдохнуть с пользой.

Например:

  1. Найдите разность чисел 8,5-7,2.

2) Найдите значение выражения а+в, если а=0,06, в=0,92.

Выражения могут предлагаться в разной словесной форме: из 8,5 вычесть 7,2; 8,5 минус 7,2; уменьшаемое 8,5, вычитаемое 7,2, найти разность; найти разность чисел 8,5 и 7,2; уменьшить 8,5 на 7,2 и т. д. Эти формулировки использует не только учитель, но и ученики.

Выражения могут включать одно действие и более чем одно действие.

Сравнение десятичных дробей. Эти упражнения имеют ряд вариантов. Могут быть даны два выражения, а надо установить, равны ли их значения, а если не равны, то какое из них больше или меньше. Например, предлагается сравнить выражения и вместо звездочки поставить знак «>», «>» или «=»:

2,7+0,9 * 0,9+2,7 55,7+7,6 * 55,7+0,3

0,5·10 * 0,7·15 2,4·9+2,4 * 2,4·10

При этом выбор знака отношения может быть выполнен либо на основе нахождения значений данных выражений и их сравнения (0,5·10<0,7·15, т. к. 5<10,5), либо на основе применения соответствующих знаний: переместительного свойства сложения 2,7+0,9 * 0,9+2,7, изменения результатов действий в зависимости от изменения одного из компонентов 55,7+7,6 * 55,7+0,3 и др.

Могут предлагаться упражнения, у которых уже дан знак отношения и одно из выражений, а другое выражение надо составить либо дополнить. Например, предлагается закончить запись: 8,1·(1,3+0,2)=8,1·1,3+…

Можно предлагать упражнения на сравнение выражений с переменной: например, а-1,7* а-1,2.

 

 

 

 

 

Опубликовано: 06.11.2025