От ВПР к ОГЭ: формирование математической грамотности обучающихся через практико-ориентированные задания
Автор: Григорьева Ольга Юрьевна
Организация: МОУ «СОШ №56 УИМ»
Населенный пункт: Челябинская область, город Магнитогорск
Автор: Бизина Татьяна Александровна
Организация: МОУ «СОШ №56 УИМ»
Населенный пункт: Челябинская область, город Магнитогорск
Автор: Ралко Ольга Евгеньевна
Организация: МОУ «СОШ №56 УИМ»
Населенный пункт: Челябинская область, город Магнитогорск
Аннотация.
В статье рассматривается преемственность заданий ВПР (6–8 классы) и модулей 1–5 ОГЭ по математике как инструмент формирования математической грамотности обучающихся. Представлена модель практико-ориентированного семинара для педагогов, направленного на развитие навыков анализа заданий, диагностики ошибок и разработки критериев оценивания. Обоснована связь предложенного подхода с требованиями ФООП и возможностями ФГИС «Моя школа».
Ключевые слова: математическая грамотность, ВПР, ОГЭ, практико-ориентированные задания, функциональная грамотность, ФООП, формирующее оценивание.
Введение
В условиях реализации Федеральной образовательной программы основного общего образования перед учителем математики стоит задача формирования не только предметных знаний, но и функциональной грамотности обучающихся.
Особое место в этом процессе занимает математическая грамотность — способность понимать, применять и интерпретировать математические знания в реальных жизненных ситуациях.
В педагогической практике часто наблюдается разрыв: ВПР рассматриваются как диагностическая процедура, а ОГЭ — как отдельный этап подготовки, требующий «специальной тренировки». Однако анализ содержания заданий показывает, что между ними существует чёткая методическая преемственность.
Математическая грамотность: что мы действительно формируем?
Математическая грамотность включает следующие компоненты:
- понимание текста и условий задачи;
- работа с моделью (таблица, схема, план, график);
- выбор математического инструмента;
- выполнение вычислений;
- интерпретация результата;
- проверка разумности ответа.
Важно отметить, что в большинстве случаев трудности обучающихся связаны не с вычислениями, а с пониманием ситуации и выбором способа решения.
ВПР как этап формирования математической грамотности
Задания ВПР по математике (6–8 классы) системно включают:
- анализ таблиц и данных;
- задачи на проценты в бытовом контексте;
- работу с планом и масштабом;
- сравнение вариантов;
- практическую геометрию.
Например, в 6 классе обучающиеся работают с таблицами и учатся извлекать информацию.
В 7 классе появляются задания с масштабом и планом.
В 8 классе — более сложные задачи на проценты и выбор выгодного варианта.
Таким образом, уже в основной школе формируются те навыки, которые в 9 классе интегрируются в модулях 1–5 ОГЭ.
ОГЭ (задания 1–5) как интегративная проверка
Практико-ориентированные модули ОГЭ («Квартира», «Тарифы», «План местности», «Шины», «Участок» и др.) представляют собой комплекс заданий, объединённых одной жизненной ситуацией.
Особенность данных модулей заключается в том, что они проверяют не отдельные умения, а их совокупность:
- понимание ситуации;
- анализ модели;
- выбор стратегии;
- интерпретацию результата.
По сути, ОГЭ не вводит новых типов мышления, а проверяет сформированность навыков, которые должны системно развиваться в 6–8 классах.
Таблица преемственности ВПР и ОГЭ
|
Задания ВПР |
Формируемые умения |
Соответствующий модуль ОГЭ |
|
Таблицы, анализ данных |
Работа с информацией |
Тарифы |
|
Масштаб, план |
Пространственное мышление |
План местности |
|
Проценты в быту |
Понимание параметров |
Шины |
|
Площадь в реальном контексте |
Математическая модель |
Участок |
|
Практические расчёты |
Интерпретация результата |
Квартира |
Данная таблица может быть использована как методический ориентир при планировании работы в 6–9 классах.
Практикум для педагогов: модель методической работы
В рамках методической работы был разработан практико-ориентированный семинар для учителей математики, включающий следующие этапы:
- Анализ заданий ВПР и ОГЭ по компонентам математической грамотности.
- Работа с ученическими решениями.
- Разработка критериев оценивания.
- Проектирование учебных приёмов.
Особое внимание уделяется переходу от оценки «правильно — неправильно» к анализу логики рассуждений обучающихся.
Формирующее оценивание и критерии
Пример критериев для практико-ориентированного задания:
- Понимание условия — 1 балл.
- Корректная математическая модель — 1 балл.
- Правильные вычисления — 1 балл.
- Интерпретация результата — 1 балл.
Даже при вычислительной ошибке обучающийся может продемонстрировать понимание ситуации и логики решения, что должно учитываться в оценивании.
Связь с ФООП и цифровой образовательной средой
Федеральная образовательная программа ориентирует педагогов на формирование метапредметных результатов и функциональной грамотности.
ФГИС «Моя школа» предоставляет возможности:
- подбора диагностических заданий;
- организации формирующего оценивания;
- анализа типичных ошибок;
- построения индивидуальных образовательных маршрутов.
Использование практико-ориентированных заданий ВПР и ОГЭ в цифровой среде позволяет выстроить непрерывную систему формирования математической грамотности.
Заключение
Системная работа с заданиями ВПР в 6–8 классах создаёт прочную основу для успешного выполнения практико-ориентированных модулей ОГЭ в 9 классе.
Подготовка к ОГЭ не должна начинаться в 9 классе.
Она формируется в процессе регулярной, осмысленной работы с заданиями, требующими анализа, моделирования и интерпретации.
Методическая поддержка учителей в этом направлении является важным условием повышения качества математического образования.
Список литературы
- Федеральная образовательная программа основного общего образования : утверждена приказом Министерства просвещения Российской Федерации. — М., 2023.
- Федеральный государственный образовательный стандарт основного общего образования (ФГОС ООО) : утв. приказом Минпросвещения России от 31.05.2021 № 287 (в действующей редакции).
- Демонстрационные варианты Всероссийских проверочных работ по математике для 6–8 классов. — Федеральная служба по надзору в сфере образования и науки (Рособрнадзор). — URL: https://fioco.ru (дата обращения: 2026).
- Демонстрационный вариант контрольных измерительных материалов основного государственного экзамена по математике. — Федеральный институт педагогических измерений. — URL: https://fipi.ru (дата обращения: 2026).
- Пойа Д. Как решать задачу. — М. : Наука, 1976.
- Поляков С. Д., Смирнова Г. И. Формирование функциональной грамотности обучающихся на уроках математики // Математика в школе. — 2022. — № 5. — С. 12–18.
- Асмолов А. Г. Формирование универсальных учебных действий в основной школе: от действия к мысли. — М. : Просвещение, 2011.
- Хуторской А. В. Современная дидактика. — СПб. : Питер, 2018.
- Материалы ФГИС «Моя школа». — URL: https://myschool.edu.ru (дата обращения: 2026).



